Non-geometric fluxes, quasi-Hopf twist deformations, and nonassociative quantum mechanics
نویسندگان
چکیده
منابع مشابه
Quasi - truth and Quantum Mechanics
Since its early formulation, non-relativistic quantum mechanics (QM) has been the source of sustained controversy about its foundation. Despite its impressive empirical success, several foundational issues have not been settled by the theory: What exactly happens with the observables when a quantum system is not being measured? And what exactly happens during measurement? What is the nature of ...
متن کاملQuasi-Hopf Superalgebras and Elliptic Quantum Supergroups
We introduce the quasi-Hopf superalgebras which are Z2 graded versions of Drinfeld’s quasi-Hopf algebras. We describe the realization of elliptic quantum supergroups as quasi-triangular quasi-Hopf superalgebras obtained from twisting the normal quantum supergroups by twistors which satisfy the graded shifted cocycle condition, thus generalizing the quasi-Hopf twisting procedure to the supersymm...
متن کاملQuasi-Hopf twistors for elliptic quantum groups
The Yang-Baxter equation admits two classes of elliptic solutions, the vertex type and the face type. On the basis of these solutions, two types of elliptic quantum groups have been introduced (Foda et al.[1], Felder [2]). Frønsdal [3, 4] made a penetrating observation that both of them are quasi-Hopf algebras, obtained by twisting the standard quantum affine algebra Uq(g). In this paper we pre...
متن کاملQuantum Double for Quasi-hopf Algebras
We introduce a quantum double quasitriangular quasi-Hopf algebra D(H) associated to any quasi-Hopf algebra H. The algebra structure is a cocycle double cross product. We use categorical reconstruction methods. As an example, we recover the quasi-Hopf algebra of Dijkgraaf, Pasquier and Roche as the quantum double D(G) associated to a finite group G and group 3-cocycle φ. We also discuss D(Ug) as...
متن کاملNambu Quantum Mechanics: A Nonlinear Generalization of Geometric Quantum Mechanics
We propose a generalization of the standard geometric formulation of quantum mechanics, based on the classical Nambu dynamics of free Euler tops. This extended quantum mechanics has in lieu of the standard exponential time evolution, a nonlinear temporal evolution given by Jacobi elliptic functions. In the limit where latter’s moduli parameters are set to zero, the usual geometric formulation o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Physics
سال: 2014
ISSN: 0022-2488,1089-7658
DOI: 10.1063/1.4902378